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Oedieated to Or R. Zahrad.'lik 0'1 the occasion of his 60th birthday. 

\'arious versions of the atoms-in-molecules method as a source for diatomic input data, and 
various approaches of the diatomics-in-molecules method are applied to calculate three lowest 
valence states of th~ NH z radical. By compariEg the results among themselves and with other 
presently available accurate data, cor,elusions are drawn concerning the reliability of ir.dividual 
solutioLs. Also, possible causes for inadequacy of d:atomics-in-molecules models are d'scussed. 

The coincidence of Rudolf Zahradnik's 60 th birthday with the 25 th anniversary of Ellison's 
Diatomics-in-Molecu\cs (DIM) method l suggests that we begin this paper with a short review 
of the latter. 

The nIM method is a quantum chemical procedure for calculating potential energy surfaces 
(PES's) of a polyatomie molecule by partitioning the total energy into atomic and diatomic 
fragment contributions. Since 1963, more than hundred and fifty papers involving the DIM 
method have appeared, the majority of them being quoted in several review artieles2 - 5. The 
basic features of the DIM theory l,6 - t 6, specific approximations inherent in the DIM ap
proach 12, I 7,18, possible extensions for including spin-orbit and nonadiabasic interactions 19, 

and calculation of general types of molecular properties20 within the DIM method have been 
outlined and discussed in a number of plpers. Table I should give a notion which kind of mole
cular systems were treated within the DIM scheme. We notice that the overwhelming majority 
of DIM applications has concerned three-atomic systems, and that calculations on four- and 
more-centre systems, involving atomic states of other than spherical symmetry, are exceptional, 
although in principle feasible. In addition to systems displayed in Table I, DIM models were 
deduced for thc description of 7!-e1cc~ron systems21 , adsorption processes22 and rare gas 
clusters23 • 

Interestingly, in the first decade (1963-1972) less than two dozen papers related to DIM were 
published. The growing interest in the DIM method during the next years was mainly motivated 
by dynamical studies of molecular systems ineluding the interpretation of s'mple chemical 
reae'. ions2 - 5, molecular beam scattering cross sections2 - 5, chemisorption24 and chemiioniza
tion 25 processes. This tendency can be illustrated by an example: the DIM model for the Ht 
systcm26 developed more than ten years ago is providing a useful framework for an up-to-date 
study of the state-to-state dynamics of the Hi i H2 -- Ht + H reaction27. 
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This situation reflects the fact that the DIM method is well suited for the construction of 
PES's appearing in dynamical calculation schemes. Relatively low computer time consumption, 
correct asymptotic behaviour upon separation to atomic and diatomic fragments, capability 
to provide both ground and excited state properties on the same footing and adaptability to 
eventually match the true surfaces are the essential points counting to the positive features of the 
DIM method. 

The validity, and therefore also the usefulness, of a DIM model depend on two factors: on the 
selection of atomic states wh;.ch combine to form polyatomic valence bond structures and on the 
numerical representation assigned to the potential energy curves and mixing-coefficient functions 
(cf. next section) entering the model as input. Concerning the first item, the problem is to 
find the smallest DIM basis with inclusion of the essential VB structures, enabling an Adequate 
description of the required electronic states of a given polyatomic species in the full range of 
nuclear configurations. This step ensures the physical soundness of the model, providing at least 
a qualitatively correct description of the states. The next step, the appropriate estimation of 
diatomic input data (obtained eventually by a fitting procedure in the sense of refs28 •29) is as
sumed to lead finally to quantitatively correct representations of the corresponding PES·s. 

In a previous paper30, a DIM model was developed for describing three low-lying 
valence states of the NHz radical, using diatomic-input data generated by means of 
the symmetrically orthogonalized (SOM) version31 of the atoms-in-molecules 
(AIM) method3z •33 . Because the character of both the AIM and DIM approaches 
allows to formulate various versions of these methods, depending on the kind of 
assumptions and approximations applied, we show in this paper how the outcome 

TABLE I 

DIM bibliography - number of papers devoted to the various systems (classification according 
to type of system and frequency of treatment) 

Type of systemU 

AtAZoo.An 
[AtAZoo.Anl+ 
XHn - 1 

[XHn-tl+ 
[XHn _ tl
XYHn_ Z 
[XYHn-zl+ 
(NeHez)+, N02, HeLi 2 • 1 
NezF, ArzF, Kr2F, KrzClJ 
Xn 

3 

35 
25 
25 
14 

9 
2 

6 

2 

Number of atoms 
in the system 

4 

12 
6 

5 

8 
1 

a Al denotes either of H, D, Li, Na; X(Y) denotes an atom different from H, D, Li. 
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of DIM calculations is sensitive with respect to changes in the numerical representa
tion of the diatomic input, and the DIM versions used. Comparison of the results 
among themselves, and with available accurate energy data on NH2 , brings evidence 
on the reliability of various versions of the AIM and DIM methods. 

THEORETICAL 

Characterization of the DIM Approach 

In the DIM theory, the polyatomic wavefunction is expanded in terms of polyatomic 
basis functions tfJi' each of which is constructed in the form of an anti symmetrized 
product 

(1) 

where tfJ~\, tfJ:i' •.• are considered to be atomic eigenfunctions associated with states 
(Xi' Pi' ..• of separate atoms A, B, ... Formally, basis functions tfJi call up a poly
atomic eigenvalue equation which we write in the form 

H = SCEC- 1 = S8, (2) 

where H is the Born-Oppenheimer Hamiltonian matrix and S the metric matrix 
related to the given basis. The essence of the DIM method consists in that it furnishes 
matrix elements of 8 in an approximative way by using external information on 
atomic and diatomic fragments. The matrix 8, having the same eigenvalues as H 
and being generally non-Hermitian, is in practical applications the source for DIM 
energy values. 

The construction of 8 is based on the partitioning of the polyatomic Hamiltonian 
into appropriate atomic and diatomic Hamiltonians, enabling to express 8 in terms 
of independent contributions from diatomic 8 AB and monatomic 8 A fragment 
matrices. While the monatomic contributions are simply related to atomic states 
energies, the diatomic fragment matrices have to be interpreted in a more complicated 
way. The link to external data are diatomic equations of the type 

hAB AB AB AB( AB)-l ABbAB 
Ai = SAi CAi e).i C;'i = S;'i ;'i (3) 

related to diatomic bases {q>~~} which are implied by the set of atomic functions 
furnished by atoms A and B. In Eq. (3), the subscript )'i labels the spin and space 
symmetry of the diatomic state and the matrix bAB is a diatomic analog to the matrix 
8 in Eq. (2), usually, however, of a smaller dimension. The relationship between 
the diatomic matrices represented in the polyatomic and diatomic bases is best 

Collection Czechoslovak Chern. Cornrnun. (Vol. 53) (1988) 



2356 Polak, Vojtik: 

viewed in the form of a mapping16, Q(R), which depends on the geometrical arrange
ment of atomic nuclei: 

(4) 

The matrices b (for all possible pairs of atoms and for all Ai) constitute the input 
for constructing 8. 

In general, the matrices b (omitting the sub- and superscripts) 

(5) 

are not Hermitian and, therefore, lead to a non-Hermitian matrix 8. We define now 
three modifications of the DIM method which are applied in the next section to 
the NH2 system. 

a) Non-Hermitian formulation (labelled NH) which consists in diagonalizing 8 
itself. 

b) Hermitian formulation (labelled H) applies diagonalization to the symmetrized 
form 

(6) 

c) Formulation using a symmetrized basis of diatomic basis function (labelled S). 
In this formulation, the mixing coefficient matrices c' are associated with diatomic 
basis functions obtained by the L6wdin symmetric orthogonalization of the original 
VB(AIM) basis. Hence, c in Eq. (5) is replaced by c' = s1f2c, leading to Hermitian 
b, and therefore also to Hermitian 8 matrices. 

DIM Models of NH2 

The DIM treatments of NH2 presented in this paper are using the model structure 
corresponding to basis d in Table 1 of ref. 3 o. This DIM model structure derives from 
atomic states N(4S,,, 2Du, 2p,,, 4pg), N-ePg), HeSg) and H+. Interestingly, in our 
earlier analysis30 we found that an appropriate DIM description of low-lying elec
tronic states of NH2 is achieved only when the VB structures involving the excited 
4Pg (2S)1 (2p)4 term of nitrogen are included. 

Concerning the numerical representation of the model, we use two orthogonalized 
versions of the AIM method for the calculation of mixed state energies5,8 and mixing 
parameters: the (Schmidt)-orthogonalized33 (OM) and the symmetrically ortho
gonalized34 (SaM) ones, because they have appeared superior35 to the other AIM 
modifications in a number of respects. Details of the AIM calculations on the NH 
and NH - fragments 31 and information on accurate potential energy curves30 

(PEes) as well are given elsewhere. 
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In our earlier study30, we represented all diatomic energies [e-parameters in Eq. 
(5)] by means of the most accurate available PEC's with the exception of those states 
for which correct dissociation limit has to be ensured by using the AIM energies 
calculated within the DIM restricted diatomic basis. The reason for using this 
numerical representation (labelled A) was that it produced the best overall description 
of the three lowest valence states with regard to accurate ab initio calculations36• 

On the other hand, however, projection analysis37 applied to the AIM wave 
functions 30 indicated that, from the total manifold of NH(NH-) states implied by 
the DIM model, only the 31'-(1) and 311(1) states of the NH species satisfy condi
tions for being treated as "pure" states. According to Kuntz and Schreiber37 only 
"pure" states can be replaced by accurate curves. Thus, we consider for comparative 
purposes an alternative numerical representation, labelled B, where accurate PEC's 
are assigned to all H2 and Hi interactions, and to the NH 31'-(1), 311(1) states. All 
other e-parameters are considered to be mixed state energies. 

The definition of the coordinate system, including the labelling of electronic 
states by symmetry species, is given in ref. 30. 

RESULTS AND DISCUSSION 

Throughout the paper, distances are expressed as relative quantities R = X/XO, 

with Xo = 0·052917 nm, and referred to as atomic units (a.u.). 

Figs la and 1b show NH2 energies, calculated by the symmetrized (S) version of 
the DIM method using numerical representations of type A and B, respectively, as 
a function of the HNH angle with bond lengths fixed at the experimental ground 
state equilibrium value 1'935 a.u. We plot here, in addition to the 2B2(1), 2 A 1(1) 
and 2 B1(1) states, being pure valence in character at all internuclear distances38, 

the 2B2(2) state which is the second lowest excited doublet electronic state at Doch 

nuclear configuration36 for the given N-H separation. Comparison with ab initio 
MO CI calculations36 reveals that the agreement in the overall pattern of these 
states for the one-dimensional cut through the PES's is good, particularly with regard 
to the behaviour of the Renner-Teller pair of surfaces emanating from the 211" 
state. Leaving a deeper assessment of both types of numerical representations to 
a later moment, we first want to clear up the question how sensitive the results 
presented in Fig. 1 are to the choice of the AIM and DIM versions. 

Restricting ourselves to the A type numerical representation (at this moment, this 
seems to be the more perspective one), we end up with six different numerical reaHza
tions of the DIM model: each of the three DIM versions (NH, H, S) can be supplied 
with either SOM or OM AIM diatomic input. Because of the topographical similarity 
of the corresponding PEe's produced by various calculations, the discrepancies of the 
individual solutions are easier to understand and categorize, if we consider changes 
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in energy with respect to a reference system rather than the absolute values of energy. 
Taking the SOM (S) solution, presented in Fig. 1 a, as the frame of reference, we 
obtain energy-difference functions for the four investigated states as displaced in 
Fig. 2. 

Primarily, it is pleasant to observe that, for all three pure valence states, the 
SOM (NH) version deviates from the SOM(S) version by less than 0·5 eV in the 
whole variable interval considered. This fact corroborates the correctness of the S 
version of the DIM method, the advantages of which have been well recognized 11.31. 

37.39.40. Since both the OM(S) and OM(NH) DIM versions yield results lying in the 
0·5 eV discrepancy interval as well, we take this fact as not contradicting our former 
conclusion31 ,41, expressible in the form of a mild preference of the SOM(S) version 
over the OM(S) one for given applications. The most discrepant behaviour of the 
results based on both H versions of the DIM method is again in accord with previous. 
results8 . 34 which found the artificial Hermitization step (6) unsuitable. On grounds: 
of all this evidence we use only the SOM(S) version of the DIM method in all re
maining applications. 

For the three states, we present in Figs 3 and 4 contour diagrams of the PES's. 
in e2v geometries, as calculated by using the numerical representations of type A and 
B, respectively. Table II serves then the purpose to assess the quality of DIM models. 

E 

120 30 

FIG. 1 

12 

! 

/ It 
. / / 

~~LJ/~ 
l~ r I 

I 'i :ts=;fi:/ J 
180 120 30 

u HNH 

Potential energy curves for NH2 in ground and three excited states for fixed bond length (RNH = 

= 1'935 a.u.) as function of bond angle (in degrees). Calculation performed using the DIM 
model SOM(S). State labelling: 0 2B2 ; 0 2A 1; L 2 B1 . Energy (E) relative to separated atoms. 
2 HeSg) + N(4Su) is in eV. Numerical representatior.s applied are of type A(a) and B(b) 

Collection Czechoslovak Chern. Commun. (Vol. 53) (1988} 



Diatomics-in-Molecules Method 2359 

by comparing selected points on these surfaces with available accurate theoretical 
and experimental data on geometry and energy characteristics. 

While the DIM model based on the numerical representation of type A yields 
a reasonable overall description of all three pure valence states, numerical representa
tion of type B fails badly in two points: in giving an adequate estimation of the 
ground state stability with respect to dissociation and in reproducing a real minimum 
on the 2 Bl surface representing a small-angle structure. Both of these deficiencies are 
very likely to be in great part due to the fact that the strongly bound NH 1 LI and 
l[+ states (with binding energies30 of about 3·9 eV and 4·5 eV, respectively) occurring 
in numerical representation of type A are substituted in the numerical representation 

1·0 ,--~---,----~---'r----' 1·0 r--~---,----_,_---,---, 

a b 

-1-0 -10 

120 30 180 120 30 wHNH wHNH 

10 I 1·0 --,-
I 

d c 
.t:.E --- .t:.E 

o·c ~ 00 

-10 ~ -10 

L-_--'-__ -'-__ ~ __ L-

180 120 30 180 120 
WHN~ 

30 

FIG. 2 

Energy differences I1E = Ev - ESOM(S) for fixed bond length (RNH = 1·935 a.u.) versus bond 
angle as calculated by various DIM models (V) corresponding to numerical representation of 
type A. For units cf. caption for Fig. 1. Labelling of DIM models: @ OM(S); 1\ SOM(NH); 
v OM(NH); X SOM(H); + OM(H). States: a 2 B2 (1) b 2 Al C 2 Bl d 2 B 2(2) 
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of type B by mixed states both bound by only about 0·9 eV. The importance of the 
1,1 and 1 ~+ states for the description of the two excited valence states can be anti
cipated on grounds of state correlations, NH2e AI) -+ NHC ,1) + H, and NHi2 BI)-+ 
-+ NHC ~+) + H, via asymmetric route (Fig. 8 of ref. 30). This situation, together 
with the fact that the 2BI(1) state correlates in our calculations with the 2Ilg{1) state 
at D <r.;h configuration instead of with the 2~: state, as it is predicted by the MO CI 
calculation36 and Walsh's qualitative theory (this point is extensively discussed 
in ref. 30), indicates that the choice of the DIM atomic basis functions is still not quite 
sufficient to provide a complete description of all subtle features of the three pure 
valence states. However, on grounds of evidence collected in Table II on the existency 
and positions of the energy minima, together with the overall pattern of these surfaces 
agreeing with ab initio calculations36•38 ,42, and considering that the 2BI(1) state 

TABLE II 

Energies (in eV) relative to equilibrium energy of the 2 B2 ground state and geometry charac-
teristics (length in a.u., angle in degrees) of important points on the C2v PES's of three low-lying 
NH2 valence states 

Calculation type 

State Quantity Experiment DIM SOM(S) 
ref.36 ref.42 ref.38 

A B 
------_. 

2B2 Emin 0 0 0 0" 0 0 

RNH !'935b 2·07 2'22 1'944 1'987 

coHNH 103'3 lOS 103 103'1 101-1 
Edis 

c 4'0d 2'97e 0'56e 3-86 

2 Al Emin 1·74 2'12 1'511 1-47 

RNH 1'897b 2·02 2'08 (1'935) 1-889 

coHNH 144.± 5 139 148 141'4 143'4 
vert. TEg 2·26 2'89 2'16" 2·26 

2n. Emin 
h 1·91 2'16 1-651 

RNH 2'00 2'08 (1'935) 

2BI Emin 3'54 r.one 40£0 4'79 

RNH 2'32 2'135 2'196 

coHNH 47 50'0 47'5 
vert. TEg 5'25 6'60 6'64" 6'50 

" Calculated at experimental GS equilibrium; b quoted in ref.42; C dissociation energy to H + 
NHer-); d quoted in ref.38; e by using the value 3'37 eV for the binding energy of the NHer-) 
state (ref.43); 1 calculated at experimental NH bond length corresponding to GS equilibrium; 
9 vertical transition energy; h within Dooh geometries. 
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becomes a high excited surface embedded in a group of Rydberg states at Dooh geo
metry3b, we accept the DIM model based on the numerical representation of type A 
as adequate for the DIM description of NHz valence states. 

It is of interest to mention the large role of the ionic functions at the nuclear 
configurations corresponding to the minima on all three valence PES's: the percentage 
of ionic contribution ranges there between 45% and 56%. The z A1(t) wave function 
at the minimum has also a large contribution from the state-group involving the 
4pg state of nitrogen (27%). Because of the large role of the ionic functions with 
the singly charged ion N -, one can expect on grounds of analogy with the HzO 
molecule16.28.z9 that ionic structures with N 2 - would further favourably affect the 
stability of the ground state. 

Having described the rather successful results on the development of DIM models 
for NHz, we shall conclude this paper by adding a few words of caution, realizing 
fully that there exist several possible causes for an erroneous application of the DIM 
method. Some of them can be traced even within our treatment of NHz. 

The validity of the DIM model can be seriously hampered, if structures important 
for the description of given states are missing. Thus, we witnessed that polyatomic 
basis functions involving the 4 Pg term of nitrogen are indispensable for an appro
priate DIM description of NHz. Further, care must be exercised in specifying di
atomic input data, since these decide about the extent of quantitative correctness 
of the model. In this connection it is pleasant to mention that diatomic input informa
tion obtained by SaM and OM AIM methods appears to be consistent with that 
obtained from large scale ab initio calculations by means of projection41 . 

Because common errors emerging from the two above points were scrutinized 
recently,44-47 we rather touch the question what happens, if atomic eigenfunctions 

FIG. 5 

Recalculation of Fig. la by using the phasc
-inconsistent numerical representation of the 
DIM model SOM(S) of type A as defir.ed 
in the text 
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appearing both in DIM diatomic and poly atomic basis functions are not fuBy con
sistent in phase definition. Such an error can occur very easily when use is made of 
a quantum chemical calculation with unsufficient knowledge of atomic function 
phases and/or axis orientation. As an example, we quote some of our own calcula
tions on the NHz radical. 30 

In ree o our aim was to develop the DIM model for the low-lying valence states 
of NHz. In the course of this study it appeared that Doch collinear configurations 
(lying in z axis) are critical for indicating the important atomic states entering the 
DIM polyatomic basis set. In this symmetry arrangement, of course, the problem of 
phases in the DIM method disappears, for no rotation of the atomic functions is 
needed to achieve the coordinate frame used for the calculation on separated di
atomic fragments. Deviation from collinearity, however, makes inconsistency 
in phases generally perceivable. Suppose we make use of diatomic mixing coefficients 
obtained by a VB AIM calculations employing z DII term functions with phases which 
do not follow the definition of basis vectors implying a standard angular momentum 
representation48 . Particularly, we choose the basis vector of the N(2 DII , M = 0) 
state, appearing in the NHC 1:"-) manifold, with an opposite phase than it would 
correspond to the convention based on the application of step-down operators. 
Because the transformation properties of this set of Ne DII) atomic functions are 
different from those supposed by the DIM scheme/ 5 operation (4) leads to an er
roneous matrix 8. In Fig. 5 we show the outcome of the DIM calculation for the 
same nuclear arrangements as in Fig. 1, using the above described phase non-adapted 
numerical representation. Because of symmetry reasons, only states of AI/(Az' B2 ) 

symmetry are affected by the phase inconsistency. Interestingly, we notice that the 
agreement of the solutions shown in Figs 1 and 5 is very good in important points 
of the surfaces: at Doch configuration the coincidence is total, and the ground state 
minimum is shifted by 0·14 eV. This makes the phase inconsistency intricately hidden. 
It is clearly manifested, however, by the anomalous behaviour of the splitting of the 
Renner-Teller pair of surfaces. 
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